Abstract

Cytoplasm from muscle lineage blastomeres of an ascidian embryo can cause cells of a nonmuscle lineage to produce larval tail muscle acetylcholinesterase. Muscle cytoplasm was partitioned microsurgically into epidermal lineage blastomeres at the eight-cell stage. Posterior half-embryos (the two B3 cells) of Ascidia nigra were obtained first by separating the anterior and posterior blastomere pairs at the four-cell stage. At third cleavage, the two B3 cells divide into an ectodermal cell pair that gives rise solely to epidermal tissues, and a mesodermal-endodermal blastomere pair from which the tail muscle cells are derived. When the ectodermal and mesendodermal blastomere pairs were isolated from one another by microsurgery and reared as partial embryos, only cells originating from the mesendodermal blastomeres produced a histochemical acetylcholinesterase reaction. Immediately after cleavage of the isolated B3 cells into ectodermal and mesendodermal cell pairs, the cleavage furrows could be made to disappear by pressing firmly on the mesendodermal cells with a microneedle. Repeated up and down pressure with the microneedle at a new position across the mesendodermal cells caused furrows to reestablish in the new position, thereby incorporating mesodermal cytoplasm and increasing the size of the ectodermal cells. The cytoplasmically altered ectodermal blastomere pairs, which became detached from the mesendodermal cells by this microsurgical procedure, continued to divide and were reared to “larval” stages. One-third of these epidermal partial larvae produced patches of cells containing acetylcholinesterase. These results lend further support to the theory that choice of particular differentiation pathways (embryonic determination) in ascidian embryos is mediated by segregation of specific egg cytoplasmic determinants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call