Abstract
Enhanced microvascular perfusion of skeletal muscle is important for nutrient exchange and contributes ∼40% insulin-mediated muscle glucose disposal. High fat-fed (36% fat wt./wt.) rats are a commonly used model of insulin-resistance that exhibit impairment of insulin-mediated microvascular recruitment and muscle glucose uptake, which is accompanied by myocyte insulin-resistance. Distinguishing the contribution of impaired microvascular recruitment and impaired insulin action in the myocyte to decreased muscle glucose uptake in these high-fat models is difficult. It is unclear whether microvascular and myocyte insulin-resistance develop simultaneously. To assess this, we used a rat diet model with a moderate increase (two-fold) in dietary fat. Sprague Dawley rats fed normal (4.8% fat wt./wt., 5FD) or high (9.0% fat wt./wt., 9FD) fat diets for 4 weeks were subject to euglycaemic hyperinsulinemic clamp (10 mU/min/kg insulin or saline) or isolated hindlimb perfusion (1.5 or 15 nM insulin or saline). Body weight, epididymal fat mass, and fasting plasma glucose were unaffected by diet. Fasting plasma insulin and non-esterified fatty acid concentrations were significantly elevated in 9FD. Glucose infusion rate and muscle glucose uptake were significantly impaired during insulin clamps in 9FD. Insulin-stimulated microvascular recruitment was significantly blunted in 9FD. Insulin-mediated muscle glucose uptake between 5FD and 9FD were not different during hindlimb perfusion. Impaired insulin-mediated muscle glucose uptake in vivo can be the direct result of reduced microvascular blood flow responses to insulin, and can result from small (two-fold) increases in dietary fat. Thus, microvascular insulin-resistance can occur independently to the development of myocyte insulin-resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.