Abstract

Although skeletal muscle is a specialized tissue that provides the motor for movement, it also participates in other functions, including the immune response. However, little is known about the effects of this multitasking on muscle. We show that muscle loses some of its capacity while it is participating in the immune response. Caterpillars (Manduca sexta) were exposed to an immune challenge, predator stress or a combination of immune challenge and predator stress. The expression of immune genes (toll-1, domeless, cactus, tube and attacin) increased in body wall muscle after exposure to an immune challenge. Muscle also showed a reduction in the amount of the energy storage molecule glycogen. During an immune challenge, the force of the defensive strike, an important anti-predator behaviour in M. sexta, was reduced. Caterpillars were also less able to defend themselves against a common enemy, the wasp Cotesia congregata, suggesting that the effect on muscle is biologically significant. Our results support the concept of an integrated defence system in which life-threatening events activate organism-wide responses. We suggest that increased mortality from predation is a non-immunological cost of infection in M. sexta. Our study also suggests that one reason non-immunological costs of infection exist is because of the participation of diverse organs, such as muscle, in immunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.