Abstract

Kipp, K, Kim, H, and Wolf, WI. Muscle forces during the squat, split squat, and step-up across a range of external loads in college-aged men. J Strength Cond Res 36(2): 314-323, 2022-Knowledge about the load-dependent demand placed on muscles during resistance training exercises is important for injury prevention and sports performance training programs. The purpose of this study was to investigate the effect of external load on lower extremity muscle forces during 3 common resistance training exercises. Nine healthy subjects performed 4 sets of the squat (SQ), split squat (SS), and step-up (SU) exercises each with 0, 25, 50, and 75% of body mass as additional load. Motion capture and force plate data were used to estimate individual muscle forces of 11 lower extremity muscles through static optimization. The results suggest load-dependent increases in muscle forces for the m. gluteus maximus, m. gluteus medius, vastus lateralis, m. vastus medius, m. vastus intermedius, m. semitendinosus, m. semimembranosus, m. biceps femoris long head, m. soleus, m. gastrocnemius lateralis, and m. gastrocnemius medialis during the execution of all 3 exercises. In addition, load-dependent increases in m. gluteus maximus, vastus lateralis, m. vastus medius, m. vastus intermedius, and m. biceps femoris long head forces were often more pronounced during the SS and SU than the SQ across the range of loads used in this study. These results suggest that the mechanical demands imposed by resistance training exercises scale with external load and that the extent of that scaling depends on the specific exercise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call