Abstract

Human muscle force estimation is important in biomechanics studies, sports and assistive devices fields. Therefore, it is essential to develop an efficient algorithm to estimate force exerted by muscles. The purpose of this study is to predict force/torque exerted by muscles under dynamic muscle contractions based on continuous wavelet transform (CWT) and artificial neural networks (ANN) approaches. Mean frequency (MF) of the surface electromyography (EMG) signals power spectrum was calculated from CWT. ANN models were trained to derive the MF-force relationships from the subset of EMG signals and the measured forces. Then we use the networks to predict the individual muscle forces for different muscle groups. Fourteen healthy subjects (10 males and 4 females) were voluntarily recruited in this study. EMG signals were collected from the biceps brachii, triceps, hamstring and quadriceps femoris muscles to evaluate the proposed method. Root mean square errors (RMSE) and correlation coefficients between the predicted forces and measured actual forces were calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.