Abstract

Estimation of muscle contraction force based on the macroscopic feature of surface electromyography (SEMG) has been widely reported, but the use of microscopic neural drive information has not been thoroughly investigated. In this study, a novel method is proposed to process individual motor unit (MU) activities (firing sequences and action potential waveforms) derived from the decomposition of high density SEMG (HD-SEMG), and it is applied to muscle force estimation. In the proposed method, a supervised machine learning approach was conducted to determine the twitch force of each MU according to its action potential waveforms, which enables separate calculation of every MU's contribution to force. Thus, the muscle force was predicted through a physiologically meaningful muscle force model. In the experiment, HD-SEMG data were recorded from the abductor pollicis brevis muscles of eight healthy subjects during their performance of thumb abduction with the force increasing gradually from zero to four force levels (10%, 20%, 30%, 40% of the maximal voluntary contraction), while the true muscle force was measured simultaneously. When the proposed method was used, the root mean square difference (RMSD) of the error of the estimated force with respect to the measured force was reported to be 8.3% ± 2.8%. The proposed method also significantly outperformed the other four common methods for force estimation (RMSD: from 11.7% to 20%, ), demonstrating its effectiveness. This study offers a useful tool for exploiting the neural drive information towards muscle force estimation with improved precision. The proposed method has wide applications in precise motor control, sport and rehabilitation medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.