Abstract

Oscillatory activity of the sensorimotor cortex shows coherence with muscle activity within the 15- to 35-Hz frequency band (β-band) during weak to moderate sustained isometric contraction. We aimed to examine the acute changes in this corticomuscular coupling due to muscle fatigue and its effect on the steadiness of the exerted force. We quantified the coherence between the electroencephalogram (EEG) recorded over the sensorimotor cortex and the rectified surface electromyogram (EMG) of the tibialis anterior muscle as well as the coefficient of variance of the dorsiflexion force (Force(CV)) and sum of the auto-power spectral density function of the force within the β-band (Force(β-PSD)) during 30% of maximal voluntary contraction (MVC) for 60 s before (prefatiguing task) and after (postfatiguing task) muscle fatigue induced by sustained isometric contraction at 50% of MVC until exhaustion in seven healthy male subjects. The magnitude of the EEG-EMG coherence increased in the postfatiguing task in six of seven subjects. The maximal peak of EEG-EMG coherence stayed within the β-band in both pre- and postfatiguing tasks. Interestingly, two subjects, who had no significant EEG-EMG coherence in the prefatiguing task, showed significant coherence in the postfatiguing task. Additionally, Force(CV) and Force(β-PSD) significantly increased after muscle fatigue. These data suggest that when muscle fatigue develops, the central nervous system enhances oscillatory muscular activity in the β-band stronger coupled with the sensorimotor cortex activity accomplishing the sustained isometric contraction at lower performance levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call