Abstract

Four well-trained combination skiers were studied through pre- and post-training for the effects of short-term intermittent training during hypoxia on muscle energetics during submaximal exercise as measured by Phosphorus-31 nuclear magnetic resonance and maximal aerobic power (VO2max). The hypoxia and training in the cold was conducted in a hypobaric chamber and comprised 60-min aerobic exercise (at an intensity equivalent to the blood lactate threshold), using a cycle ergometer or a treadmill twice a day for 4, consecutive days at 5 degrees C, in conditions equivalent to an altitude of 2000 m (593 mm Hg). No change in VO2max was observed over the training period, while in the muscle energetics during submaximal exercise, the values of phosphocreatine/(phosphocreatine+inorganic phosphate) and intracellular pH were found to be significantly increased by training during hypoxia. During recovery, the time constant of phosphocreatine was found to have been significantly reduced [pre, 27.9 (SD 6.7) s; post, 22.5 (SD 4.7) s, P < 0.01]. The observed inhibition of phosphocreatine as well as that of intracellular pH changes after training during hypoxia and quicker recovery of phosphocreatine in submaximal exercise tests, may indicate improved oxidative capacity (i.e. a high adenosine 5'-triphosphate formation rate) despite the short-term hypoxia training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.