Abstract

AbstractWe propose a muscle‐driven motion generation approach to realize virtual human motion with user interaction and higher fidelity, which can address the problem that the joint‐driven fails to reflect the motion process of the human body. First, a simplified virtual human musculoskeletal model is built based on human biomechanics. Then, a hierarchical policy learning framework is constructed including motion tracking layer, SPD controller and muscle control layer. The motion tracking layer is responsible for mimicking reference motion and completing control command, using proximal policy optimization to train the policy; the muscle control layer is aimed to minimize muscle energy consumption and train the policy based on supervised learning; the SPD controller acts as a link between the two layers. At the same time, we integrate the curriculum learning to improve the efficiency and success rate of policy training. Simulation experiments show that the proposed approach can use motion capture data and pose estimation data as reference motions to generate better and more adaptable motions. Furthermore, the virtual human has the ability to respond to the user control command during the motion, and can complete the target task successfully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.