Abstract
Physical inactivity that accompanies ageing and disease may hasten disability by reducing skeletal muscle contractility. To characterize skeletal muscle functional adaptations to muscle disuse, we compared contractile performance at the molecular, cellular and whole‐muscle levels in healthy active older men and women (n = 15) and inactive older men and women with advanced‐stage, symptomatic knee osteoarthritis (OA) (n = 16). OA patients showed reduced (P < 0.01) knee extensor function. At the cellular level, single muscle fibre force production was reduced in OA patients in myosin heavy chain (MHC) I and IIA fibres (both P < 0.05) and differences in IIA fibres persisted after adjustments for fibre cross‐sectional area (P < 0.05). Although no group differences in contractile velocity or power output were found for any fibre type, sex was found to modify the effect of OA, with a reduction in MHC IIA power output and a trend towards reduced shortening velocity in women, but increases in both variables in men (P < 0.05 and P = 0.07, respectively). At the molecular level, these adaptations in MHC IIA fibre function were explained by sex‐specific differences (P ≤ 0.05) in myosin–actin cross‐bridge kinetics. Additionally, cross‐bridge kinetics were slowed in MHC I fibres in OA patients (P < 0.01), attributable entirely to reductions in women with knee OA (P < 0.05), a phenotype that could be reproduced in vitro by chemical modification of protein thiol residues. Our results identify molecular and cellular functional adaptations in skeletal muscle that may contribute to reduced physical function with knee OA‐associated muscle disuse, with sex‐specific differences that may explain a greater disposition towards disability in women.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.