Abstract

We investigated the relationship between muscle contractile characteristics, collected using percutaneous electrical stimulation, and high-intensity exercise performance. Seventeen participants performed a muscle performance test for the calculation of rate of torque development (RTD), rate of relaxation (RR(1/2)), rate of fatigue and fatigue resistance. On a second visit the participants completed a Wingate cycle ergometer test with peak power, mean power, fatigue index and fatigue rate calculated. The muscle fatigue index related significantly to the WAnT fatigue index and fatigue rate (p < 0.01). The change in rate of torque development (%DeltaRTD) was also related significantly to the fatigue rate (W/s) during the WAnT. Subjects displaying the greatest reduction in RTD had the greatest fatigue rate during the WAnT and greater fatigue during the electrical stimulation protocol. There were no significant relationships between peak (r 0.36; p > 0.01) or mean power (r -0.11, p > 0.01) with any of the muscle performance measures. These findings demonstrate that muscle contractile characteristics, elicited during standardised in vivo electrical stimulation, relate to performance during a Wingate anaerobic test. They suggest that muscle contraction characteristics play an important role in high-intensity exercise performance and indicate that electrical stimulation protocols can be a useful additional tool to explore muscle contraction characteristics in relation to exercise performance and trainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.