Abstract
The functional anatomy of the pelvic limb of the ostrich (Struthio camelus) was investigated in order to assess musculoskeletal specialization related to locomotor performance. The pelvic limbs of ten ostriches were dissected and detailed measurements of all muscle tendon units of the pelvic limb were made, including muscle mass, muscle length, fascicle length, pennation angle, tendon mass and tendon length. From these measurements other muscle properties such as muscle volume, physiological cross-sectional area (PCSA), tendon cross-sectional area, maximum isometric muscle force and tendon stress were derived, using standard relationships and published muscle data. Larger muscles tended to be located more proximally and had longer fascicle lengths and lower pennation angles. This led to an expected proximal to distal reduction in total muscle mass. An exception to this trend was the gastrocnemius muscle, which was found to have the largest volume and PCSA and also had the highest capacity for both force and power production. Generally high-power muscles were located more proximally in the limb, while some small distal muscles (tibialis cranialis and flexor perforatus digiti III), with short fibres, were found to have very high force generation capacities. The greatest proportion of pelvic muscle volume was for the hip extensors, while the highest capacity for force generation was observed in the extensors of the ankle, many of which were also in series with long tendons and thus were functionally suited to elastic energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.