Abstract

BackgroundEarly detection of changes at the muscular level before a contracture develops is important to gain knowledge about the development of deformities in individuals with spasticity. However, little information is available about muscle morphology in children with spastic diplegic cerebral palsy (CP) without contracture or equinus gait. Therefore, the aim of this study was to compare the gastrocnemius medialis (GM) and Achilles tendon architecture of children and adolescents with spastic CP without contracture or equinus gait to that of typically developing (TD) children.MethodsTwo-dimensional ultrasonography was used to assess the morphological properties of the GM muscle and Achilles tendon in 10 children with spastic diplegic CP (Gross Motor Function Classification System level I–II) and 12 TD children (mean age 12.0 (2.8) and 11.3 (2.5) years, respectively). The children with CP were not restricted in the performance of daily tasks, and therefore had a high functional capacity. Mean muscle and tendon parameters were statistically compared (independent t-tests or Mann-Whitney U-tests).ResultsWhen normalized to lower leg length, muscle-tendon unit length and GM muscle belly length were found to be significantly shorter (p < 0.05, effect size (ES) = 1.00 and 0.98, respectively) in the children with spastic CP. Furthermore, there was a tendency for increased Achilles tendon length when expressed as a percentage of muscle-tendon unit length (p = 0.08, ES = − 0.80) in the individuals with CP. This group also showed shorter muscle fascicles (3.4 cm vs. 4.4 cm, p < 0.01, ES = 1.12) and increased fascicle pennation angle (21.9° vs. 18.1°, p < 0.01, ES = − 1.36, respectively). However, muscle thickness and Achilles tendon cross-sectional area did not differ between groups. Resting ankle joint angle was significantly more plantar flexed (− 26.2° vs. − 20.8°, p < 0.05, ES = 1.06) in the children with CP.ConclusionsMorphological alterations of the plantar flexor muscle-tendon unit are also present in children and adolescents with mild forms of spastic CP. These alterations may contribute to functional deficits such as muscle weakness, and therefore have to be considered in the clinical decision-making process, as well as in the selection of therapeutic interventions.

Highlights

  • Detection of changes at the muscular level before a contracture develops is important to gain knowledge about the development of deformities in individuals with spasticity

  • The resting ankle joint was more plantar flexed in the children with cerebral palsy (CP) compared to the typically developing (TD) children (Table 1)

  • gastrocnemius medialis (GM) muscle fascicles at rest were found to be significantly shorter in the children with CP compared to the TD group, in both absolute and normalized terms (ES = 1.12 and 1.42 respectively, Table 2)

Read more

Summary

Introduction

Detection of changes at the muscular level before a contracture develops is important to gain knowledge about the development of deformities in individuals with spasticity. CP causes secondary alteration of the musculoskeletal system, e.g., muscle weakness, restricted joint range of motion, and increased joint stiffness [2]; the basic mechanisms that lead to these functional deficits are still not clearly understood [3] Due to their important relation to the functional capacity, recent studies have concentrated on the examination of both the function and the properties of the muscles and tendons in individuals with CP. In agreement with studies that have used magnetic resonance imaging [17,18,19], studies performed with US imaging have reported consistent evidence of reduced muscle size, indicated by, among other things, reduced muscle volume [8, 11, 20, 21], thickness [9, 13], and belly length [8, 11, 15] in children with CP Some of these alterations, e.g., the reduced muscle volume, have been found in very young children (2 to 5 years of age) [21]. Due to differences in etiology and motor impairment in individuals with CP, the inclusion of individuals with different sub-types (hemiparetic, diparetic) and/or with differences in gross motor function [9, 21, 23, 24] might have hampered the interpretation of the study results

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.