Abstract

Acetylcholine (ACh) is the primary parasympathetic neurotransmitter in the airways. Recently, it was established that ACh, via muscarinic receptors, regulates airway remodeling in animal models of asthma and chronic obstructive pulmonary disease (COPD). The mechanisms involved are not well understood. Here, we investigated the functional interaction between muscarinic receptor stimulation and transforming growth factor (TGF)-β(1) on the expression of contractile proteins in human airway smooth muscle (ASM) cells. ASM cells expressing functional muscarinic M(2) and M(3) receptors were stimulated with methacholine (MCh), TGF-β(1), or their combination for up to 7 days. Western blot analysis revealed a strong induction of sm-α-actin and calponin by TGF-β(1), which was increased by MCh in ASM cells. Immunocytochemistry confirmed these results and revealed that the presence of MCh augmented the formation of sm-α-actin stress fibers by TGF-β(1). MCh did not augment TGF-β(1)-induced gene transcription of contractile phenotype markers. Rather, translational processes were involved in the augmentation of TGF-β(1)-induced contractile protein expression by muscarinic receptor stimulation, including phosphorylation of glycogen synthase kinase-3β and 4E-binding protein 1, which was enhanced by MCh. In conclusion, muscarinic receptor stimulation augments functional effects of TGF-β(1) in human ASM cells on cellular processes that underpin ASM remodeling in asthma and COPD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.