Abstract

GTPase activity has been measured in synaptic membranes from bovine retina, with and without muscarinic receptor stimulation. Maximal stimulation above basal levels was achieved with 5 microM oxotremorine and 100 microM carbachol. (4-Hydroxy-2-butynyl)-1-trimethylammonium m-chlorocarbanilate chloride, which is selective for the M1 muscarinic receptor, failed to stimulate GTPase activity. 4-Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) inhibition of oxotremorine stimulation demonstrated the presence of two populations of receptors, a low-affinity site (IC50 +/- SEM, 0.63 +/- 0.18 microM) which accounted for 63% of the inhibition and a high-affinity site (IC50 less than 1 nM) which accounted for the remaining 37%. When carbachol-stimulated GTPase activity was assayed, a single 4-DAMP inhibitory site was apparent (IC50 +/- SEM, 2.0 +/- 0.9 microM). Pirenzepine inhibited GTPase activity at a single site (IC50 values +/- SEM, 46.9 +/- 11 and 25.4 +/- 6.5 microM against oxotremorine and carbachol, respectively). Methoctramine was equipotent against carbachol and oxotremorine stimulation (IC50 values, 4.2 +/- 1.8 and 6.2 +/- 1.5 microM). Inhibition of maximal carbachol and oxotremorine stimulation by muscarinic antagonists at the major site had a rank order of potency of 4-DAMP = methoctramine greater than pirenzepine. Thus, the major site for muscarinic stimulation of GTPase activity in bovine retinal membranes is pharmacologically similar to M2 receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call