Abstract

Acetylcholine can have diverse effects on visual cortical neurons as a result of variations in postsynaptic receptor subtypes as well as the types of neurons and subcellular sites targeted. This study examines the cellular basis for cholinergic activation in visual cortex via M(2) type muscarinic receptors in gamma-aminobutyric acid (GABA)-ergic and non-GABAergic cells, using immunocytochemical techniques. At light microscopic resolution, M(2) immunoreactivity (-ir) was seen in all layers except area and sublayer specific bands in layer 4. Subcellularly, M(2)-ir occurred in both dendrites and terminals that form symmetric and asymmetric junctions. Layers 5 and 6 were characterized by axosomatic contacts that displayed labeling in the presynaptic component, and layer 6 displayed perikaryal postsynaptic staining, suggesting that corticofugal output neurons may be modulated particularly strongly via M(2). Infragranular layers differed from the supragranular layers in that more labeled profiles were axonal than dendritic, indicating a dominant presynaptic effect by acetylcholine via M(2) there. Unilateral cingulate cortex cuts caused reduction of cholinergic and noradrenergic fibers in the lesioned hemisphere at light microscopic resolution; at electron microscopic resolution, the synapse density and axonal M(2) labeling were reduced, suggesting that M(2) was localized presynaptically on extrathalamic modulatory inputs. Dual labeling with GABA in visual cortex layer 5 showed that half of M(2)-labeled dendrites originated from GABAergic neurons. Given that only one-fifth of all cortical dendritic profiles are GABAergic, this prevalence of dual labeling indicates an enrichment of M(2) within GABAergic dendrites and, thus, implicates abundant postsynaptic action on GABAergic neurons via M(2). In contrast, only one-tenth of M(2)-labeled terminals originated from GABAergic neurons, suggesting that the presynaptic action of acetylcholine via M(2) receptors would be more selective for non-GABAergic terminals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call