Abstract

Membranes from house fly heads were tested for the presence of mucarinic acetylcholine receptors using as a probe [ 3H]quinuclidinyl benzilate ([ 3H]QNB). Based on the presence of saturable and reversible high-affinity binding of [ 3H]QNB, which is inhibited by muscarinic drugs, it is suggested that these sites may be muscarinic receptors. However, these putative muscarinic receptors differ in several characteristics from the ones in mammalian brain. They have lower affinities for muscarinic drugs and lower stereoselectivity, a relatively higher affinity for the nicotinic antagonist d-tubocurarine, a lower Hill coefficient for binding of muscarinic antagonists, and a lower concentration relative to α-bungarotoxin binding sites in the same membranes. Also, unlike mammalian muscarinic receptors, they are sensitive to treatments with N-ethylmaleimide and 5,5′-dithiobis(2-nitrobenzoic acid). The effect of reduction of disulfide bonds by dithiothreitol or mercaptoethanol suggests that only the insect receptor has one or more disulfide bonds which are important to binding. On the other hand, the putative muscarinic receptors of both insect and mammalian brains have important SH group(s), whose alkylation by p-chloromercuribenzoate inhibits binding. Also, chlorobenzilate is equally effective in inhibiting [ 3H]QNB binding to muscarinic putative receptors of house fly and bovine brains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.