Abstract
Working memory relies on the dorsolateral prefrontal cortex (dlPFC), where microcircuits of pyramidal neurons enable persistent firing in the absence of sensory input, maintaining information through recurrent excitation. This activity relies on acetylcholine, although the molecular mechanisms for this dependence are not thoroughly understood. This study investigated the role of muscarinic M1 receptors (M1Rs) in the dlPFC using iontophoresis coupled with single-unit recordings from aging monkeys with naturally occurring cholinergic depletion. We found that M1R stimulation produced an inverted-U dose response on cell firing and behavioral performance when given systemically to aged monkeys. Immunoelectron microscopy localized KCNQ isoforms (Kv7.2, Kv7.3, and Kv7.5) on layer III dendrites and spines, similar to M1Rs. Iontophoretic manipulation of KCNQ channels altered cell firing and reversed the effects of M1R compounds, suggesting that KCNQ channels are one mechanism for M1R actions in the dlPFC. These results indicate that M1Rs may be an appropriate target to treat cognitive disorders with cholinergic alterations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.