Abstract

It is widely recognized that neuronal network activity can be modulated via activation of nicotinic and muscarinic acetylcholine receptors located pre- and postsynaptically. It was established in our earlier study that the activation of presynaptic nicotinic receptors greatly facilitates the retinotectal glutamatergic transmission. In the present study, we have determined a transmitter of tectal recurrent excitation and explored the effects of muscarinic acetylcholine receptor activation on the recurrent excitation and the activity of frog tectum column in vivo. Discharge of a single retinal ganglion cell was elicited by a minimal electrical stimulation of the retina. Evoked activity of the tectum column was recorded using the carbon-fiber microelectrode inserted into the tectum layer F. We found the following: 1. The recurrent excitation in the tectum column was not affected by d-tubocurarine (10μM) and was greatly depressed by the kynurenic acid (500μM), demonstrating glutamatergic nature of the recurrent excitation. 2. The glutamatergic recurrent excitation was largely reduced by carbamylcholine (100μM) and oxotremorine-M (10μM), demonstrating that the activation of muscarinic receptors, located, presumably, on the presynaptic terminals of recurrent pear-shaped neurons, inhibits the recurrent excitation in the tectum column. 3. The muscarinic inhibition of glutamatergic recurrent transmission had critical influence on the activity of the tectum column, preventing the generation of an output signal through suppression of the NMDA receptor activation and establishing necessary conditions for returning of the network to its resting state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call