Abstract

To determine whether muscarinic agonists attenuated isoproterenol-stimulated decreases in intracellular calcium concentration ([Ca2+]i), changes in [Ca2+]i were measured in single airway smooth muscle cells using ratiometric analysis of fura 2 fluorescence. Isoproterenol (10(-5) M) and 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) decreased [Ca2+]i by 24 +/- 3% (P < 0.05, n= 28) and 17 +/- 1% (P < 0.05, n = 6), respectively. The decreased [Ca2+]i in response to isoproterenol was inhibited by propranolol (10(-6) M) and Rp-adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS) (10-40 microM). In subsequent experiments assessing the effects of muscarinic agonists, isoproterenol did not decrease [Ca2+]i in the presence of carbachol (5 x 10(-8) M) (6 +/- 8% increase; NS, n = 8). To determine the mechanism underlying this inhibitory effect of carbachol, cells were loaded with 4,5-dimethoxy-2-nitrobenzyl adenosine-3',5'-cyclic monophosphate (caged cAMP). For cells loaded with 20 microM caged cAMP, photolysis of caged cAMP decreased basal [Ca2+]i by 28 +/- 3% (P < 0.05, n = 12). In the presence of carbachol (5 x 10(-8) M), photolysis of caged cAMP still induced a 27 +/- 4% decrease in [Ca2+]i (P < 0.05, n = 12). We concluded that a low concentration of carbachol did attenuate isoproterenol-stimulated decreases in [Ca2+]i. Because low concentrations of carbachol attenuated the decreases in [Ca2+]i stimulated by isoproterenol but not the comparable decreases stimulated by cAMP directly, we concluded that the inhibition of adenylyl cyclase activity by muscarinic agonists contributed to the regulation of [Ca2+]i in airway smooth muscle cells. The findings suggested that physiological levels of cholinergic stimulation inhibit adenylyl cyclase, thereby attenuating the effects that beta-adrenergic agonists have on [Ca2+]i.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.