Abstract

Muscarinic cholinoreceptors regulate the neurosecretion process in vertebrate neuromuscular junctions. The diversity of muscarinic effects on acetylcholine (ACh) secretion may be attributed to the different muscarinic subtypes involved in this process. In the present study, the location of five muscarinic receptor subtypes (M1, M2, M3, M4 and M5) on the motor nerve terminals of frog cutaneous pectoris muscle was shown using specific polyclonal antibodies. The modulatory roles of these receptors were investigated via assessment of the effects of muscarine and specific muscarinic antagonists on the quantal content of endplate currents (EPCs) and the time course of secretion, which was estimated from the distribution of “real” synaptic delays of EPCs recorded in a low Ca2+/high Mg2+ solution.The agonist muscarine decreased the EPC quantal content and synchronized the release process. The depressing action of muscarine on the EPC quantal content was abolished only by pretreatment of the preparation with the M3 blockers 4-DAMP (1,1-Dimethyl-4-diphenylacetoxypiperidinium iodide) and J 104129 fumarate ((αR)-α-Cyclopentyl-α-hydroxy-N-[1-(4-methyl-3-pentenyl)-4-piperidinyl]benzeneacetamide fumarate). Moreover, antagonists of the M1, M2, M3 and M4 receptors per se diminished the intensity of secretion, which suggests a putative up-regulation of the release by endogenous ACh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.