Abstract

Musa balbisiana Colla (Family: Musaceae), commonly known as banana and native to India and other parts of Asia, is very rich in nutritional value and has strong antioxidant potential. In the present study, we have developed Musa balbisiana (MB) fruit pulp powder and evaluated its cardioprotective effect in cardiac hypertrophy, which is often associated with inflammation and oxidative stress. An ultra-high-pressure liquid chromatography-mass spectrometer (UPLC-MS/MS) has been used for the detection and systematic characterization of the phenolic compounds present in Musa balbisiana fruit pulp. The cardioprotective effect of MB was evaluated in a rat model of isoproterenol- (ISO-) induced cardiac hypertrophy by subcutaneous administration of isoproterenol (5 mg/kg−1/day−1), delivered through an alzet minipump for 14 days. Oral administration of MB fruit pulp powder (200 mg/kg/day) significantly (p < 0.001) decreased heart weight/tail length ratio and cardiac hypertrophy markers like ANP, BNP, β-MHC, and collagen-1 gene expression. MB also attenuated ISO-induced cardiac inflammation and oxidative stress. The in vivo data were further confirmed in vitro in H9c2 cells where the antihypertrophic and anti-inflammatory effect of the aqueous extract of MB was observed in the presence of ISO and lipopolysaccharide (LPS), respectively. This study strongly suggests that supplementation of dried Musa balbisiana fruit powder can be useful for the prevention of cardiac hypertrophy via the inhibition of inflammation and oxidative stress.

Highlights

  • Cardiac hypertrophy leading to heart failure is one of the major causes of morbidity and mortality in the world

  • The screening and identification of phenolic compounds present in Musa balbisiana fruit pulp powder extract were performed by LC-ESI-MS/MS

  • We identified different phenolic compounds present in Musa balbisiana (Table 1)

Read more

Summary

Introduction

Cardiac hypertrophy leading to heart failure is one of the major causes of morbidity and mortality in the world. It is characterized by an increase in cardiac muscle mass and accumulation of myocardial scarring (collagen) with a decrease in its pumping ability. Cardiac hypertrophy is typically characterized by an enlargement of the heart and an increase in myocyte cell volume, and caused by various factors including hemodynamic stress [1]. Oxidative stress and inflammation play a crucial role in the development of various diseases, including cardiovascular disease, diabetes, obesity, cancer, metabolic syndrome, and other chronic diseases. Finding novel strategies and therapeutic interventions to prevent chronic diseases like cardiovascular disease, diabetes, and obesity via the inhibition of oxidative stress and inflammation are very important. Most of the heart failure patients are treated with

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call