Abstract
Recent thymic emigrants that fail postpositive selection maturation are targeted by complement proteins. T cells likely acquire complement resistance during maturation in the thymus, a complement-privileged organ. To test this, thymocytes and fresh serum were separately obtained and incubated together in vitro to assess complement deposition. Complement binding decreased with development and maturation. Complement binding decreased from the double-positive thymocyte to the single-positive stage, and within single-positive thymocytes, complement binding gradually decreased with increasing intrathymic maturation. Binding of the central complement protein C3 to wild-type immature thymocytes required the lectin but not the classical pathway. Specifically, MBL2 but not MBL1 was required, demonstrating a unique function for MBL2. Previous studies demonstrated that the loss of NKAP, a transcriptional regulator of T cell maturation, caused peripheral T cell lymphopenia and enhanced complement susceptibility. To determine whether complement causes NKAP-deficient T cell disappearance, both the lectin and classical pathways were genetically ablated. This blocked C3 deposition on NKAP-deficient T cells but failed to restore normal cellularity, indicating that complement contributes to clearance but is not the primary cause of peripheral T cell lymphopenia. Rather, the accumulation of lipid peroxides in NKAP-deficient T cells was observed. Lipid peroxidation is a salient feature of ferroptosis, an iron-dependent nonapoptotic cell death. Thus, wild-type thymocytes naturally acquire the ability to protect themselves from complement targeting by MBL2 with maturation. However, NKAP-deficient immature peripheral T cells remain scarce in complement-deficient mice likely due to ferroptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.