Abstract
Inherited succinic semialdehyde dehydrogenase (SSADH) deficiency (gamma-hydroxybutyric aciduria) is one of the few neurogenetic disorders of GABA metabolism, and one in which tonic-clonic seizures associate with increased central nervous system GABA and gamma-hydroxybutyrate (GHB). To explore pathomechanisms and develop new preclinical treatment approaches, we developed a murine knockout model of SSADH deficiency. In the absence of intervention, SSADH(-/-) mice suffer 100% mortality at week 3 to 4 of life from generalized tonic-clonic seizures. In this report, we summarize earlier studies indicating disruption of the GABA/glutamine axis in SSADH(-/-) mouse brain, effective pharmacotherapeutic approaches, preliminary gene-therapy results, and electrophysiological analyses of mutant mice. We also present new evidence for oxidative stress in SSADH(-/-) mice, significant alterations of dopamine metabolism, and abnormal neurosteroid levels in brain, potentially implicating the GABA(A) receptor in pathogenesis. In SSADH deficiency, the accumulation of two neuroactive species, GABA and GHB, is significant because GABA is one of the earliest transmitters expressed in mammals, with key roles in synaptogenesis and myelination, whereas GHB displays a vast array of pharmacological actions. The SSADH(-/-) mouse may represent a useful model in which to explore the effect of GABA and GHB accumulation on central nervous system development and function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.