Abstract

BackgroundAluminum oxide-based nanowhiskers (AO nanowhiskers) have been used in manufacturing processes as catalyst supports, flame retardants, adsorbents, or in ceramic, metal and plastic composite materials. They are classified as high aspect ratio nanomaterials. Our aim was to assess in vivo toxicity of inhaled AO nanowhisker aerosols.MethodsPrimary dimensions of AO nanowhiskers specified by manufacturer were 2–4 nm x 2800 nm. The aluminum content found in this nanomaterial was 30% [mixed phase material containing Al(OH)3 and AlOOH]. Male mice (C57Bl/6 J) were exposed to AO nanowhiskers for 4 hrs/day, 5 days/wk for 2 or 4 wks in a dynamic whole body exposure chamber. The whiskers were aerosolized with an acoustical dry aerosol generator that included a grounded metal elutriator and a venturi aspirator to enhance deagglomeration. Average concentration of aerosol in the chamber was 3.3 ± 0.6 mg/m3 and the mobility diameter was 150 ± 1.6 nm. Both groups of mice (2 or 4 wks exposure) were necropsied immediately after the last exposure. Aluminum content in the lung, heart, liver, and spleen was determined. Pulmonary toxicity assessment was performed by evaluation of bronchoalveolar lavage (BAL) fluid (enumeration of total and differential cells, total protein, activity of lactate dehydrogenase [LDH] and cytokines), blood (total and differential cell counts), lung histopathology and pulmonary mechanics.ResultsFollowing exposure, mean Al content of lungs was 0.25, 8.10 and 15.37 μg/g lung (dry wt) respectively for sham, 2 wk and 4 wk exposure groups. The number of total cells and macrophages in BAL fluid was 2-times higher in animals exposed for 2 wks and 6-times higher in mice exposed for 4 wks, compared to shams (p < 0.01, p < 0.001, respectively). However no neutrophilic inflammation in BAL fluid was found and neutrophils were below 1% in all groups. No significant differences were found in total protein, activity of LDH, or cytokines levels (IL-6, IFN-γ, MIP-1α, TNF-α, and MIP-2) between shams and exposed mice.ConclusionsSub-chronic inhalation exposures to aluminum-oxide based nanowhiskers induced increased lung macrophages, but no inflammatory or toxic responses were observed.

Highlights

  • Aluminum oxide-based nanowhiskers (AO nanowhiskers) have been used in manufacturing processes as catalyst supports, flame retardants, adsorbents, or in ceramic, metal and plastic composite materials

  • Due to increasing production of high aspect ratio nanomaterials (HARNs) and subsequent increasing potential for inhalation exposure, attention should be paid to development of HARNs that are safe by design before the products are introduced to the market on a large scale [9,13]

  • Nanowhisker characterization Crystalline phases present in the AO nanowhiskers were determined from powder X-ray diffraction (XRD)

Read more

Summary

Introduction

Aluminum oxide-based nanowhiskers (AO nanowhiskers) have been used in manufacturing processes as catalyst supports, flame retardants, adsorbents, or in ceramic, metal and plastic composite materials. They are classified as high aspect ratio nanomaterials. An increasing number of studies have focused attention on investigation of fiber-shaped or high aspect ratio nanomaterials (HARNs) due to their asbestos-like morphology and concern that these materials may have similar mechanisms of toxicity [4,5,6,7,8,9,10]. Due to increasing production of HARNs and subsequent increasing potential for inhalation exposure, attention should be paid to development of HARNs that are safe by design before the products are introduced to the market on a large scale [9,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call