Abstract

The Centers for Disease Control and Injury Prevention estimate that almost 2 million people sustain a traumatic brain injury (TBI) every year in the United States. In fact, TBI is a contributing factor to over a third of all injury-related mortality. Nonetheless, the cellular and molecular mechanisms underlying the pathophysiology of TBI are poorly understood. Thus, preclinical models of TBI capable of replicating the injury mechanisms pertinent to TBI in human patients are a critical research need. The controlled cortical impact (CCI) model of TBI utilizes a mechanical device to directly impact the exposed cortex. While no model can full recapitulate the disparate injury patterns and heterogeneous nature of TBI in human patients, CCI is capable of inducing a wide range of clinically applicable TBI. Furthermore, CCI is easily standardized allowing investigators to compare results across experiments as well as across investigative groups. The following protocol is a detailed description of applying a severe CCI with a commercially available impacting device in a murine model of TBI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call