Abstract

Murine mammary tumor virus protein interactions in the intact virion structure were studied with the use of the cleavable cross-linking reagents dithiobis(succinimidyl propionate) and methyl 4-mercaptobutyrimidate hydrochloride. Cross-linked oligomeric complexes of murine mammary tumor virus proteins were analyzed by two-dimensional gel electrophoresis. Among the complexes most consistently formed were a heterodimer of the two glycoproteins gp36 and gp52, the homodimer of gp36, and the homotrimer of gp52. A very prominent oligomer formed at higher concentrations of dithiobis(succinimidyl propionate) was a complex of about 230,000 molecular weight, made up of three molecules each of gp36 and gp52. A number of lines of evidence, including electron microscopic analysis, suggest that the 230,000-molecular-weight complex actually represents the murine mammary tumor virus spike structure. Of the murine mammary tumor virus core proteins, p14 forms homooligomers most readily. Upon cross-linking with methyl 4-mercaptobutyrimidate hydrochloride a small amount of what seems to be a heterodimer made up of the N-terminal gag protein p10 and the hydrophobic membrane glycoprotein gp36 can be observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.