Abstract
The effects of homologous IL-10 administration during an established autoimmune disease are controversial, given its reported immunostimulatory and immunosuppressive properties. Studies of collagen-induced arthritis have shown efficacy with repeated administrations of IL-10; however, when the EBV IL-10 homologue was administered via adenovirus gene transfer technology the results were equivocal. Therefore, the present study was undertaken to elucidate the effects of prolonged homologous IL-10 administration via adenovirus-mediated gene delivery on the progression of established arthritis. Collagen type II (CII)-immunized mice received i.v. injections of 10(7) or 10(8) PFU of an E1-deleted adenoviral vector containing the murine IL-10 gene (AdIL-10), after arthritis onset. Mice were monitored for 3 wk for disease progression, and gene transduction was assessed by quantification of serum mIL-10. CII-specific cell-mediated and humoral immune responses were analyzed by lymph node cell proliferation, cytokine production, and anti-CII Ab responses. Furthermore, because adenoviral vectors have been reported to induce organ dysfunction due to cell-mediated immune responses to the viral Ags, we have also evaluated delayed-type hypersensitivity responses and reactive hepatitis to the systemically delivered adenovirus and whether the IL-10 produced could influence those responses. Sustained suppression of autoimmune arthritis and elevated serum levels of IL-10 were achieved in our study. AdIL-10 treatment reduced cell-mediated immune reactivity, but did not affect humoral responses. Furthermore, IL-10 was able to reduce, but not totally abrogate, adenovirus-induced hepatic inflammation. These findings provide further insights into the diverse interplay of immune processes involved in autoimmune inflammation and the mechanism of cytokine immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.