Abstract
Inflammation has been implicated in myocardial infarction (MI). MDM2 associates with nuclear factor-κB (NF-κB)-mediated inflammation. However, the role of MDM2 in MI remains unclear. This study aimed to evaluate the impacts of MDM2 inhibition on cardiac dysfunction and fibrosis after experimental MI and the underlying mechanisms. Three-month-old male C57BL/6 mice were subjected to left anterior descending (LAD) coronary artery ligation for induction of myocardial infarction (MI). Immediately after MI induction, mice were treated with Nutlin-3a (100mg/kg) or vehicle twice daily for 4weeks. Survival, heart function and fibrosis were assessed. Signaling molecules were detected by Western blotting. Mouse myofibroblasts under oxygen and glucose deprivation were used for in vitro experiments. MDM2 protein expression was significantly elevated in the mouse heart after MI. Compared with vehicle-treated animals, Nutlin-3a treatment reduced the mouse mortality. Nutlin-3a treatment improved heart function and decreased the infarct scar and fibrosis compared with vehicle. Furthermore, MDM2 inhibition restored IκB and inhibited NF-κB activation, leading to suppressed production of proinflammatory cytokines in the heart after MI. The consistent results were obtained in vitro. MDM2 inhibition reduced cardiac dysfunction and fibrosis after MI. These effects of MDM2 inhibition is mediated through modulating NF-κB activation, resulting in inhibition of inflammatory response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.