Abstract

Dendritic cells (DCs) are potent inducers of cytotoxic T lymphocytes (CTLs) when pulsed with an antigenic peptide or tumor lysate. In this report, we have used liposome-mediated gene transfer to examine the ability of plasmid DNA encoding the human melanoma-associated antigen gp100 to elicit CD8(+) and CD4(+) T-cell responses. We also compared the efficacy between gp100 gene-modified DCs and naked DNA (pCDNA3/gp100)-based vaccines at inducing anti-tumor immunity. DCs were generated from murine bone marrow and transfected in vitro with plasmid DNA containing the gp100 gene. These gp100-modified DCs (DC/gps) were used to stimulate syngeneic naive spleen T cells in vitro or to immunize mice in vivo. Antigen-specific, MHC-restricted CTLs were generated when DC/gps were used to prime T cells both in vitro and in vivo. Thus, these CTLs were cytolytic for gp100-transfected syngeneic (H-2(b)) tumor MCA106 (MCA/gp) and vaccinia-pMel17/gp100-infected syngeneic B16 and MCA106, but not parental tumor MCA106 and B16, or gp100-transfected allogeneic tumor P815 (H-2(d)). Immunization with DC/gp protected mice from subsequent challenge with MCA/gp but not parental MCA106. Antibody-mediated T-cell subset depletion experiments demonstrate that induction of CTLs in vivo is dependent on both CD4(+) and CD8(+) T cells. Furthermore, DC/gp immunization elicits an antigen-specific CD4(+) T-cell response, suggesting that DC/gps present MHC class II epitopes to CD4(+) T cells. In addition, our data show that gene-modified, DC-based vaccines are more effective than the naked DNA-based vaccines at eliciting anti-tumor immunity in both prophylactic and therapeutic models. These results suggest that the use of DCs transfected with plasmid DNA containing a gene for TAA may be superior to peptide-pulsed DCs and naked DNA-based vaccines for immunotherapy and could provide an alternative strategy for tumor vaccine design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.