Abstract

Rotavirus (RV) infection causes acute, watery dehydrating diarrhea and even death in infants and other young animals, resulting in a severe economic burden; however, little is known about the innate immune mechanisms associated with RV infection. Dendritic cells (DCs), which are professional antigen-presenting cells (APCs), serve as a bridge connecting the innate and adaptive immune system. In this study, the interaction between murine bone marrow-derived DCs (BMDCs) and porcine rotavirus (PRV) was investigated invitro. Upon stimulation, the expression levels of MHC-II, CD40, CD80, CD86 and CD83 in BMDCs increased in a time-dependent manner, indicating activation and maturation by PRV. In addition, up-regulated Toll-like receptor 2 (TLR2), TLR3 and NF-κB increased the production of interleukin-12 and interferon-γ. The PRV-stimulated BMDCs also showed increased stimulatory capacity in mixed lymphocyte reactions and promoted the Th1 subtype response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call