Abstract

Beta-defensins are cationic peptides produced by epithelial cells that have been proposed to be an important component of immune function at mucosal surfaces. Similarities between mammalian beta-defensins may permit the use of murine models to further define the role of these peptides in innate host defense. Murine beta-defensin-3 (mBD-3) is a peptide that exhibits homology at the gene level to human beta-defensin-2 (hBD-2), one of four beta-defensins identified in man. The purpose of this study was to determine the antimicrobial activity of mBD-3, the tissue distribution of mBD-3 expression, and the effect of gram-negative bacterial infection on mBD-3 expression. Based on the sequence deduced from mBD-3 cDNA, a 40-amino acid peptide was assembled using automated [n-(9-fluorenyl)methoxycarbonyl] solid-phase synthesis. The antimicrobial activity of synthetic mBD-3 was evaluated in microdilution broth assays using bacterial and fungal organisms. mBD-3 mRNA expression was assayed by polymerase chain reaction (PCR) using cDNA derived from a panel of tissues. Expression of mBD-3 was also evaluated in tissues obtained from mice 24 h after intraperitoneal infection with Escherichia coli using reverse transcriptase (RT)-PCR. Synthetic mBD-3 inhibited the growth of E. coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans at concentrations from 25 to 50 microg/mL. Constitutive expression of mBD-3 mRNA was not consistently found in any organ using RT-PCR. In an E. coli peritonitis model, expression of mBD-3 mRNA was upregulated only in the esophagus and tongue. We conclude that mBD-3 is an inducible peptide with limited tissue expression during E. coli peritonitis. Because it exhibits broad-spectrum antimicrobial activity, this peptide may serve as an innate defense against microbial invasion at specific mucosal surfaces in the mouse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call