Abstract

The murine albino-deletion complex developed as part of the Oak Ridge specific-locus test covers 6-11 cM of chromosome 7. This complex has proven to be a valuable resource for localizing traits to a small target region for positional cloning. In this study, we mapped the endpoints of deletions in this complex using all of the available Mit simple-sequence length polymorphism (SSLP) markers. Concurrently, this mapping has determined the map order of nearly all of the SSLP markers, most of which were previously unresolved. The SSLP-based deletion map was confirmed and genetic distances were determined using the European Collaborative Interspecific Backcross panel of nearly a thousand mice. The average SSLP marker resolution is 0.3-0.4 cM, comparable to the cloning capacity of yeast artificial chromosomes (YACs). The SSLP markers were then used to construct a genetically anchored YAC framework map that further confirms the deletion map. We find that the largest deleted region distal to Tyr is about two to three times larger than the largest proximal deletion region, and the original C3H/101 regions flanking the deletions (moved to an St2A cch/cch background) are smaller than anticipated, which we suggest may result from increased recombination rates immediately flanking the deleted regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.