Abstract

Two strains, 81s02T and 334s03T, were isolated from the sediment core near the hydrothermal field of southern Okinawa Trough. The cells of both strains were observed to be rod-shaped, non-gliding, Gram-staining negative, yellow-pigmented, facultatively anaerobic, catalase and oxidase positive, and showing optimum growth at 30 °C and pH 7.5. The strains 81s02T and 334s03T were able to tolerate up to 10% and 9% (w/v) NaCl concentration, respectively. Based on phylogenomic analysis, the average nucleotide identity (ANI) and the digital DNA-DNA hybridization (dDDH) values between the two strains and the nearest phylogenetic neighbors of the genus Muricauda were in range of 78.0-86.3% and 21.5-33.9%, respectively. The strains 81s02T and 334s03T shared 98.1% 16S rRNA gene sequence similarity to each other but were identified as two distinct species based on 81.4-81.5% ANIb, 85.5-85.6% ANIm and 25.4% dDDH values calculated using whole genome sequences. The strains 81s02T and 334s03T shared the highest 16S rRNA gene sequence similarity to M. lutimaris SMK-108T (98.7%) and M. aurea BC31-1-A7T (98.8%), respectively. The major fatty acid of strains 81s02T and 334s03T were identified similarly as iso-C15:0, iso-C17:0 3-OH and iso-C15:1 G, and the major polar lipids of the both strains consisted of phosphatidylethanolamine and two unidentified lipids. The strains contained MK-6 as their predominant menaquinone. The genomic G+C contents of strains 81s02T and 334s03T were determined to be 41.6 and 41.9 mol%, respectively. Based on the phylogenetic and phenotypic characteristics, both strains are considered to represent two novel species of the genus Muricauda, and the names Muricauda okinawensis sp. nov. and Muricauda yonaguniensis sp. nov. are proposed for strains 81s02T (=KCTC 92889T = MCCC 1K08502T) and 334s03T (=KCTC 92890T = MCCC 1K08503T).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.