Abstract
Abstract: ATP dependent MurC-F ligases are essential for the biosynthesis of peptidoglycan, an essential bacterial cell wall component that is required for bacterial cell survival. Last, in the series, MurF catalyzes the ATP-dependent addition of D-Ala-D-Ala dipeptide to UDP-N-acetylmuramyl-tripeptide to form the UDP-N-acetylmuramy-pentapeptide monomeric precursor of peptidoglycan. Owing to its critical essentiality in peptidoglycan biosynthesis and absence in eukaryotic counterparts, MurF is considered a promising target for the design and development of potent antibacterial agents. Several MurF inhibitors have been designed and evaluated for their MurF inhibitory and antibacterial activity. These include aminoalkylphosphinates, sulfonamides, diarylquinolones, hydroxylamines, phosphorylated hydroxylamines, thiazolylaminopyrimidines, 2,4,6-trisubstituted 1,3,5-triazines, etc. However, most of the inhibitors developed till date lack potent antibacterial activity against both Gram-positive and Gram-negative bacteria. In the present review, an updated status of MurF ligase inhibitors is presented that may provide a useful source for the design of novel MurF inhibitors with potent and broad-spectrum antibacterial activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.