Abstract

Muscle RING-finger protein-1 (MuRF-1), an E3 ubiquitin ligase, has been reported to aggravate skeletal muscle denervated atrophy by mediating the ubiquitination degradation of multiple proteins, whereas the molecular mechanism underlying MuRF-1-mediated internal laryngeal muscle denervated atrophy remains unknown. A rat unilateral recurrent laryngeal nerve (RLN) transection model was established to evaluate denervated muscle atrophy of the larynx. The expression of MuRF-1, G- and F-actin in thyroarytenoid muscle (TA) myocytes before and after RLN injury was analyzed by immunofluorescence and Western blotting. Coimmunoprecipitation experiments detected molecular interactions between MuRF-1 and G-actin. Immunoprecipitation tested MuRF-1-mediated ubiquitination of G-actin in denervated and innervated TA muscle tissues. The shRNA-MuRF-1 AAV was used to suppress MuRF-1 expression in denervated TA muscles in vivo. First, MuRF-1 expression was significantly elevated in denervated TA muscle compared to innervated TA muscle (p < 0.001). Second, there was a progressive increase in the G/F-actin ratio in TA myocytes from day 3 to 14 after RLNI (p < 0.01). Furthermore, colocalization of MuRF-1 and G-actin in denervated TA myocytes was observed. Moreover, the upregulation of MuRF-1 was closely associated with the ubiquitination of G-actin in denervated TA myocytes and muscle tissues. Knockdown of MuRF-1 decelerated the degree of TA muscle atrophy compared with that in the Blank and NC groups (p < 0.001) but seemed to promote the compensatory movement of the healthy side. Collectively, we illustrate a novel molecular mechanism underlying MuRF-1-mediated internal laryngeal muscle denervated atrophy in that MuRF-1 could promote disequilibrium of the G/F-actin ratio by regulating G-actin ubiquitination. NA Laryngoscope, 134:855-864, 2024.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call