Abstract
The impermeability barrier provided by the outer membrane of enteric bacteria, a feature lacking in Gram-positive bacteria, plays a major role in maintaining resistance to numerous antimicrobial compounds and antibiotics. Here we demonstrate that mutational inactivation of spr, coding for a muramyl endopeptidase, significantly sensitizes Salmonella enterica serovar Typhimurium to vancomycin without any accompanying apparent growth defect or outer membrane destabilization. A similar phenotype was not achieved by deleting the genes coding for muramyl endopeptidases MepA, PbpG, NlpC, YedA, or YhdO. The spr mutant showed increased autolytic behavior in response to not only vancomycin, but also to penicillin G, an antibiotic for which the mutant displayed a wild-type MIC. A screen for suppressor mutations of the spr mutant phenotype revealed that deletion of tsp (prc), encoding a periplasmic carboxypeptidase involved in processing Spr and PBP3, restored intrinsic resistance to vancomycin and reversed the autolytic phenotype of the spr mutant. Our data suggest that Spr contributes to intrinsic antibiotic resistance in S. Typhimurium without directly affecting the outer membrane permeability barrier. Furthermore, our data suggests that compounds targeting specific cell wall endopeptidases might have the potential to expand the activity spectrum of traditional Gram-positive antibiotics.
Highlights
IntroductionPeptidoglycan (murein) constitutes a main component of the bacterial cell wall
Peptidoglycan constitutes a main component of the bacterial cell wall
Typhimurium genome includes genes with high sequence similarity to the mepS, mepM, and mepH genes of E. coli, and given the potential importance of mepS and mepM for viability of E. coli (Singh et al, 2012), we studied the phenotypes of S
Summary
Peptidoglycan (murein) constitutes a main component of the bacterial cell wall. It is composed of repeated N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) disaccharide units, cross-linked by peptide bridges. The synthesis of this mesh is the target of several classes of antibiotics, such as the β-lactams and glycopeptides. Peptidoglycan functions to maintain bacterial shape, septum formation at the point of cell division, and cell integrity upon internal turgor stress. To facilitate changes in size and shape during growth, bacteria need enzymes that can assemble and disassemble peptidoglycan. The process of re-shaping peptidoglycan involves the concerted activities of periplasmic amidases, endopeptidases, glycosylases and transpeptidases (penicillin-binding proteins, PBPs) (Sauvage et al, 2008).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.