Abstract

Nucleotide-binding oligomerization domain 2 (NOD2) is the innate receptor of muramyl dipeptide (MDP). Our previous study revealed that MDP could enhance thermal injury-induced inflammatory cytokine production and organ function injury in rats. The present study was to determine the effect of MDP on autophagy and NOD2/receptor-interacting serine/threonine protein kinases (RICK) signaling pathway of lung injury after thermal injury. Forty male Sprague-Dawlay rats were randomly divided into four groups: normal control (NC) group, MDP group, Scald group, and MDP + Scald group. Scald group only suffered 20% total body surface area third-degree (TBSA) thermal injury. MDP group was only administered 5.0 mg/kg MDP through the left femoral vein; 5.0 mg/kg MDP was administered through the left femoral vein at 24 h after thermal injury in the MDP + Scald group. TBSA thermal injury (20%) not only significantly increased the plasma inflammatory cytokines production, but also elevated the expression of LC3-I/II, the accumulation of autophagosome in the lung tissue. Compared with the Scald group, MDP + Scald double hit led to more serious inflammatory responses and higher expression of NOD2 mRNA, RICK, NF-κB p65, LC3-I/II, and the accumulation of more autophagosome in the lung tissue. MDP enhances thermal injury-induced autophagy and proinflammatory cytokine response of lung injury, which could be achieved via activating the NOD2/RICK signaling pathway in rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.