Abstract

BackgroundOvarian follicle development is a complex process. Paracrine interactions between somatic and germ cells are critical for normal follicular development and oocyte maturation. Studies have suggested that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte. The objective of the present study is to assess, using an in vivo immature rat model, gene expression profile in granulosa cells, which may be linked to the developmental competence of the oocyte. We hypothesized that expression of specific genes in granulosa cells may be correlated with the developmental competence of the oocyte.MethodsImmature rats were injected with eCG and 24 h thereafter with anti-eCG antibody to induce follicular atresia or with pre-immune serum to stimulate follicle development. A high percentage (30-50%, normal developmental competence, NDC) of oocytes from eCG/pre-immune serum group developed to term after embryo transfer compared to those from eCG/anti-eCG (0%, poor developmental competence, PDC). Gene expression profiles of mural granulosa cells from the above oocyte-collected follicles were assessed by Affymetrix rat whole genome array.ResultsThe result showed that twelve genes were up-regulated, while one gene was down-regulated more than 1.5 folds in the NDC group compared with those in the PDC group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase (Lox) and nerve growth factor receptor associated protein 1 (Ngfrap1), which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2 (Ggbt2), which is involved in the regulation of extracellular matrix organization and biogenesis.ConclusionsThe data in the present study demonstrate a close association between specific gene expression in mural granulosa cells and the developmental competence of oocytes. This finding suggests that the most differentially expressed gene, lysyl oxidase, may be a candidate biomarker of oocyte health and useful for the selection of good quality oocytes for assisted reproduction.

Highlights

  • IntroductionParacrine interactions between somatic and germ cells are critical for normal follicular development [1]

  • Ovarian follicle development is a complex process

  • While oocyte maturation is known to depend on secretory products of the granulosa and cumulus cells, proliferation, differentiation and apoptosis of these support cells is under tight control of the oocyte, suggesting that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte

Read more

Summary

Introduction

Paracrine interactions between somatic and germ cells are critical for normal follicular development [1]. During ovarian stimulation and ovulation induction, a cohort of heterogeneous follicles is recruited to develop and ovulate, irrespective of their differentiative state. This creates an asynchrony in the maturation process and heterogeneity in the quality of the oocytes recovered for assisted reproduction. Paracrine interactions between somatic and germ cells are critical for normal follicular development and oocyte maturation. Studies have suggested that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte. We hypothesized that expression of specific genes in granulosa cells may be correlated with the developmental competence of the oocyte

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call