Abstract

Muonic atom spectroscopy–the measurement of the x rays emitted during the formation process of a muonic atom–has a long standing history in probing the shape and size of nuclei. In fact, almost all stable elements have been subject to muonic atom spectroscopy measurements and the absolute charge radii extracted from these measurements typically offer the highest accuracy available. However, so far only targets of at least a few hundred milligram could be used as it required to stop a muon beam directly in the target to form the muonic atom. We have developed a new method relying on repeated transfer reactions taking place inside a 100 bar hydrogen gas cell with an admixture of 0.25% deuterium that allows us to drastically reduce the amount of target material needed while still offering an adequate efficiency. Detailed simulations of the transfer reactions match the measured data, suggesting good understanding of the processes taking place inside the gas mixture. As a proof of principle we demonstrate the method with a measurement of the 2p-1s muonic x rays from a 5 upmu hbox {g} gold target.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.