Abstract

The use of implanted muons to probe the spin dynamics and electronic excitations in a variety of magnetic and non-magnetic materials is reviewed and is split into three main sections, the first of which is an introduction to the historical context and background of the muon technique, which includes a basic introduction to the experimental method and underlying theoretical models. The second section is concerned with inorganic magnetic systems, starting with an overview of spin dynamics around critical points in ordered magnets. This is followed by an introduction to the early work on spin glasses, liquids and ices, which then continues onto the recent research in this area, including a discussion of some of the more controversial recent work on spin ices and magnetic monopoles. Information obtained by muons vital to two very important technological areas—magnetic semiconductors and next-generation energy materials—closes the discussion of inorganic magnetic materials. The final section is concerned with spin dynamics and magnetism in soft materials, and starts with discussing many of the key results in molecular magnets and organic spintronics. Spin dynamics in organic semiconductors, polymers and biological molecules is then covered, where contradictory experimental and theoretical work on charge carrier motion is presented. The similarities between the low-field relaxation rates in these ‘conducting’ organic materials is compared to measurements of the electron spin relaxation measured in localized electronic states, obtained from high-field avoided level crossing spectroscopy in similar (and the same) materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call