Abstract

Positive muon spin relaxation experiments have been conducted on the heavy-fermion superconductor UPt3 in both the normal and superconducting states for zero, transverse, and longitudinally applied magnetic fields. Below 6 K in zero applied field, the μ+ relaxation rate is approximately twice that expected from195Pt nuclear dipolar relaxation alone. Transverse- and longitudinal-field measurements show that the observe relaxation rate depends on magnetic field and is quasistatic in origin. It is suggested that the onset of very weak (≈10−3 μB/U atom) magnetic ordering below approximately 6 K is responsible for the observed increase in the relaxation rate. μ+ Knight shift measurements in the normal state of UPt3 show a temperature dependent shift Kμ which tracks the bulk susceptibility X. From the Kμ vs. X plot, a μ+ hyperfine field of approximately 100 Oe/μB is extracted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.