Abstract

This work investigates the muon capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H and the contribution to their total capture rates arising from the axial two-body currents obtained imposing the partially-conserved-axial-current (PCAC) hypothesis. The initial and final A=2 and 3 nuclear wave functions are obtained from the Argonne v_{18} two-nucleon potential, in combination with the Urbana IX three-nucleon potential in the case of A=3. The weak current consists of vector and axial components derived in chiral effective field theory. The low-energy constant entering the vector (axial) component is determined by reproducting the isovector combination of the trinucleon magnetic moment (Gamow-Teller matrix element of tritium beta-decay). The total capture rates are 393.1(8) s^{-1} for A=2 and 1488(9) s^{-1} for A=3, where the uncertainties arise from the adopted fitting procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.