Abstract

The municipal wastes were utilized as substrate for polyhydroxyalkanoate (PHA) using two strains of Bacillus licheniformis (PHAs-007, wild type and M2-12, mutant). Municipal wastes were subjected to separate wastewater and biosolid. Municipal biosolid was digested by anaerobic bacteria thereafter only the supernatant with soluble organic compounds was subjected into the PHA-producing reactor containing municipal wastewater. The mutant strain M2-12 gave the highest value of biomass (42.0 ± 2.0 g/L) and PHA concentration (37.4 ± 1.0 g/L with 88.9 % of dry cell weight, DCW) and reduced 76.5 % of soluble chemical oxygen demand after 60 h of cultivation. The value of pH, biochemical oxygen demand and total solid of the reclaimed wastewater after PHA recovery was 7.1, 20 and 97 mg/L, respectively. Moreover, the polymers produced by both strains of B. licheniformis were characterized. The resultant polymer from B. licheniformis PHAs-007 and M2-12 cultivated in the PHA-producing reactor was identified as poly-3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB-co-3HV)] and poly-3-hydroxybutyrate-co-4-hydroxybutyrate [P(3HB-co-4HB)], respectively. The results suggesting that the production of PHA by municipal wastes is feasible thus the PHA production stage can be integrated in waste treatment to produce PHA and treated municipal wastes at the same time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.