Abstract

This paper investigates the production of liquid transportation fuels from municipal solid waste (MSW). A comprehensive process synthesis superstructure is utilized that incorporates a novel mathematical model for MSW gasification. The production of liquid products proceeds through a synthesis gas intermediate that can be converted into Fischer–Tropsch hydrocarbons or methanol. The methanol can be converted into either gasoline or olefins, and the olefins may subsequently be converted into gasoline and distillate. Simultaneous heat, power, and water integration is included within the process synthesis framework to minimize utilities costs. A rigorous deterministic global optimization branch-and-bound strategy is utilized to minimize the overall cost of the waste-to-liquids (WTL) refinery and determine the optimal process topology. Several case studies are presented to illustrate the process synthesis framework and the nonconvex mixed-integer nonlinear optimization model presented in this paper. This is the first study that explores the possibility of liquid fuels production from municipal solid waste utilizing a process synthesis approach within a global optimization framework. The results suggest that the production of liquid fuels from MSW is competitive with petroleum-based processes. The effect that the delivered cost of municipal solid waste has on the overall cost of liquids production is also investigated parametrically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.