Abstract
Munc13-3 is a presynaptic protein implicated in vesicle priming that is strongly expressed in cerebellar granule cells (GCs). Mice deficient of Munc13-3 (Munc13-3(-/-)) show an increased paired-pulse ratio (PPR), which led to the hypothesis that Munc13-3 increases the release probability (pr) of vesicles. In the present study, we analyzed unitary synaptic connections between GCs and basket cells in acute cerebellar slices from wild-type and Munc13-3(-/-) mice. Unitary EPSCs recorded from Munc13-3(-/-) GCs showed normal kinetics and synaptic latency but a significantly increased PPR and fraction of synaptic failures. A quantal analysis revealed that neither the charge of single quanta nor the binominal parameter N were affected by loss of Munc13-3 but that pr was almost halved in Munc13-3(-/-). Neither presynaptic Ca(2+) influx was affected by deletion of Munc13-3 nor replenishment of the readily releasable vesicle pool. However, a high concentration of EGTA led to a reduction in EPSCs that was significantly stronger in Munc13-3(-/-). We conclude that Munc13-3 is responsible for an additional step of molecular and/or positional "superpriming" that substantially increases the efficacy of Ca(2+)-triggered release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.