Abstract

In this article, we present an effective encoding of dendrograms by embedding them into the Bruhat-Tits trees associated to p-adic number fields. As an application, we show how strings over a finite alphabet can be encoded in cyclotomic extensions of ℚ p and discuss p-adic DNA encoding. The application leads to fast p-adic agglomerative hierarchic algorithms similar to the ones recently used e.g. by A. Khrennikov and others. From the viewpoint of p-adic geometry, to encode a dendrogram X in a p-adic field K means to fix a set S of K-rational punctures on the p-adic projective line ℙ1. To ℙ1 \ S is associated in a natural way a subtree inside the Bruhat-Tits tree which recovers X, a method first used by F. Kato in 1999 in the classification of discrete subgroups of PGL2(K). Next, we show how the p-adic moduli space \( \mathfrak{M}_{0,n} \) of ℙ1 with n punctures can be applied to the study of time series of dendrograms and those symmetries arising from hyperbolic actions on ℙ1. In this way, we can associate to certain classes of dynamical systems a Mumford curve, i.e. a p-adic algebraic curve with totally degenerate reduction modulo p. Finally, we indicate some of our results in the study of general discrete actions on ℙ1, and their relation to p-adic Hurwitz spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.