Abstract

Airborne transmission of SARS-CoV-2 mostly occurs indoors, and effective mitigation strategies for specific building types are needed. Most guidance provided during the pandemic focused on general strategies that may not be applicable for all buildings. A systematic evaluation of infection risk mitigation strategies for different public and commercial buildings would facilitate their reopening process as well as post-pandemic operation. This study evaluates engineering mitigation strategies for five selected US Department of Energy prototype commercial buildings (i.e., Medium Office, Large Office, Small Hotel, Stand-Alone Retail, and Secondary School). The evaluation applied the multizone airflow and contaminant simulation software, CONTAM, with a newly developed CONTAM-quanta approach for infection risk assessment. The zone-to-zone quanta transmission and quanta fate were analyzed. The effectiveness of mechanical ventilation, and in-duct and in-room air treatment mitigation strategies were evaluated and compared. The efficacy of mitigation strategies was evaluated for full, 75%, 50% and 25% of design occupancy of these buildings under no-mask and mask-wearing conditions. Results suggested that for small spaces, in-duct air treatment would be insufficient for mitigating infection risks and additional in-room treatment devices would be needed. To avoid assessing mitigation strategies by simulating every building configuration, correlations of individual infection risk as a function of building mitigation parameters were developed upon extensive parametric studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call