Abstract

Abstract The eccentric rotor extruder is a new kind of extrusion equipment with novel structure and outstanding engineering performance. As the structure of the eccentric rotor extruder is different from that of the traditional screw extruder, the control of the barrel temperature becomes important, including avoiding the influence of heating coupling and achieving high control accuracy. A neuron proportional-integral-derivative (neuron-PID) control algorithm of barrel temperature for the eccentric rotor extruder is introduced. The neural self-learning algorithm is able to tune PID parameters online, and the particle swarm optimization (PSO) algorithm is adopted to optimize the initial weight coefficients of the neuron. The experimental results show that the PSO-neuron-PID controller has the advantages of low overshoot and high control accuracy, and the influence of heat coupling can be counteracted effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.