Abstract
Water temperature measurements (2004–2016) from two small rivers in the High Arctic were analyzed to determine the effects of climate variability on thermal regime and the sensitivity to climate change. The East and West rivers (unofficial names) drain similar watersheds (11.6 and 8.0 km2, respectively) and are located at the Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, Canada (74°55′N, 109°35′W). Differences in seasonal timing of river temperatures were evident when comparing the coldest and warmest years of the study period, and across different discharge conditions. Snowmelt runoff is characterized by uniformly cold water (∼0–1 °C) over a wide range of discharge conditions, followed by warming water temperatures during flow recession. The rivers showed varying sensitivity to mid-summer air temperature conditions in a given year, with warmer years indicating high correlation (r2 = 0.794–0.929), whereas colder years showed reduced correlation (r2 = 0.368–0.778). River temperatures reached levels which are reported to negatively affect fish and other cold-water aquatic species (>18 °C) with greater frequency and duration during the warmest years. These results provide a basis to further enhance prediction of river thermal conditions to assess ecosystem health in a river system and to refine insights into the effects of climate change on High Arctic aquatic ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.